Sabtu, 08 Desember 2012












Rangkaian Listrik Seri
Rangkaian listrik seri adalah suatu rangkaian listrik, di mana input suatu komponen berasal dari output komponen lainnya. Hal inilah yang menyebabkan rangkaian listrik seri dapat menghemat biaya (digunakan sedikit kabel penghubung). Selain memeliki kelebihan, rangkaian listrik seri juga memiliki suatu kelemahan, yaitu jika salah satu komponen dicabut atau rusak, maka komponen yang lain tidak akan berfungsi sebagaimana mestinya. Misal tiga buah bola lampu dirangkai seri, maka input dari lampu satu akan datang dari output lampu yang lain. Jika salah satu lampu dicabut atau rusak, maka lampu yan lain akan ikut padam. Perhatikanlah rangkaian seri tiga lampu berikut
iDevice icon Persamaan persamaan dalam rangkaian hambatan seri
Persamaan hambatan pengganti rangkaian seri dapat dicari dari persamaan awal, di mana kuat arus listrik pada tiap tiap hambaran adalah sama, sedangkan beda potensial di tiap tiap hambatan bernilai berbeda. Untu melihat persamaan hambatan seri, tekanlah tombol berikut
iDevice icon Simulasi Fisis Rangkaian Seri
Berikut ini adalah simulasi fisis rangkaian seri. Untuk melihatnya, tekanlah tombol berikut









Hambatan Listrik
Dalam suatu rangkaian listrik tentu terdapat hambatan. Hambatan/resistansi merupakan karakteristik umum dari suatu rangkaian. Berikut akan dijelaskan secara lebih detail karakteristik hambatan komponen-komponen dalam rangkaian listrik
1) Hambatan Kawat Penghantar
Besarnya hambatan kawat penghantar dipengaruhi oleh tiga faktor, yaitu Hambatan Jenis
Penghantar,Panjang Penghantar, dan Luas Penampang Penghantar
2) Hambatan Resistor
Dalam suatu rangkaian, kadangkala digunakan resistor sebagai penghambat arus. Resistor digunakan agar tidak membuang banyak biaya dalam pembuatan suatu hambatan. Besarnya resistansi suatu resistor dapat kita tentukan secara langsung menggunakan alat ukur hambatan (ohmmeter) atau bisa juga dilakukan penghitungan manual menggunakan kode warna resistor. Terkait dengan kode warna resistor, akan dijelaskan seperti berikut
 
Daftar Kode Warna Resistor
Warna Angka I
Angka II Faktor Pengali
Toleransi
Hitam 0 0 100  
Coklat 1 1 101  
Merah 2 2 102  
Jingga 3 3 103  
Kuning 4 4 104  
Hijau 5 5 105  
Biru 6 6 106  
Ungu 7 7 107  
Abu abu
8 8 108  
Putih 9 9 109 5%
Emas       10%
Tak Berwarna
      20%
iDevice icon Model Resistor
Apakah anda pernah melihat resitor?
Berikut adalah contoh resistor yang sering digunakan dalam bidang elektronika/kelistrikan dan sudah lengkap dengan kode warnanya. Untuk melihatnya, tekanlah tombol di bawah ini




Sabtu, 04 Agustus 2012

WarnaPita pertamaPita keduaPita ketiga
(pengali)
Pita keempat
(toleransi)
Pita kelima
(koefisien suhu)
Hitam00× 100

Cokelat11×101± 1% (F)100 ppmMerah22× 102± 2% (G)50 ppmOranye33× 103
15 ppmKuning44× 104
25 ppmHijau55× 105± 0.5% (D)
Biru66× 106± 0.25% (C)
Ungu77× 107± 0.1% (B)
Abu-abu88× 108± 0.05% (A)
Putih99× 109

Emas

× 10-1± 5% (J)
Perak

× 10-2± 10% (K)
Kosong


± 20% (M)

Senin, 23 Juli 2012

Mengukur Komponen oleh Wayan Suarsa

IDevice Icon 1. Mengukur Resistor
Resistor adalah suatu komponen yang banyak dipakai di dalam rangkaian elektronika. Fungsi utamanya adalah membatasi (restrict) aliran arus listrik. Fungsi lainnya sebagai resistor (R) pembagi tegangan (voltage divider), yang menghasilkan tegangan panjar maju (forward bias) dan tegangan panjar mundur (reverse bias), sebagai pembangkit potensial (output) vo, dan potensial merujuk pada hukum Ohm : I = V/R, semakin besar nilai tahanan/resistan (R), semakin kecil arus (I) yang dapat mengalir. Besar kecilnya nilai satuan Ohm yang dimiliki oleh resistor dapat dihitung dengan melihat pita (band) warna yang terdapat pada badan resistor. Mengikuti gambar di bawah ini:

Jika pita pertama berwarna kuning, pita kedua berwarna ungu, pita ketiga berwarna coklat, pita keempat berwarna emas, nilai satuan Ohm dari resistor tersebut adalah 47 x 101 = 470 dengan toleransi 5%. Harap diingat, warna kuning menunjukkan angka 4, warna ungu menunjukkan angka 7, warna coklat menunjukkan angka 1, dengan demikian faktor pengali = 101, jika pita ketiga berwarna merah, faktor pengali = 102, demikian seterusnya. (Lihat kembali modul tentang komponen elektronika). Untuk lebih jelas, pelajari gambar di bawah ini, (di download dari situs/website www.diyguitarist.com)

Cara lain untuk mengetahui besarnya nilai satuan Ohm sebuah resistor adalah mengukurnya dengan Multimeter. Perhatikan gambar di bawah ini. Saklar jangkauan ukur pada posisi Ω, batas ukur (range) berada pada posisi x1, x10 atau kΩ.
Gambar. Megukur Resistor


IDevice Icon 2. Mengukur Variabel Resistor
Variabel resistor adalah resistor yang dapat berubah nilai satuan Ohm-nya dengan cara memutar-mutar tuas pemutar atau sekrup yang menggerakkan kontak geser/penyapu (wiper) yang terdapat di dalam resistor tersebut. Lihat gambar di bawah ini
 
Variabel resistor yang memiliki tuas pemutar biasanya disebut potensiometer (potentiometer), dan yang memiliki sekrup pengatur disebut preset atau trimpot.
Mengukur nilai satuan Ohm dari variabel resistor dengan Multimeter adalah seperti yang ditunjukkan oleh gambar di bawah ini. Saklar jangkauan ukur pada posisi Ω, batas ukur (range) berada pada posisi x1, x10 atau kΩ, sesuai kebutuhan.
Gambar. Mengukur Variabel Resistor

IDevice Icon 3. Mengukur Resistor Peka Cahaya/LDR
Resistor Peka Cahaya/Light Dependence Resistor (LDR) adalah sebuah resistor yang berfungsi sebagai input transducer (sensor) dimana nilai satuan Ohm-nya dipengaruhi oleh cahaya yang jatuh di permukaan LDR tersebut.
Mengukur nilai satuan Ohm dari LDR dengan menggunakan Multimeter adalah seperti yang ditunjukkan oleh gambar di bawah ini. Saklar jangkauan ukur pada posisi Ω, batas ukur (range) berada pada posisi x1, x10 atau kΩ, sesuai kebutuhan.
Gambar. Mengukur Light Dependence Resistor (LDR)
 
Sebagai acuan, ditempat gelap, nilai satuan Ohm dari LDR = 1MΩ (1 Mega Ohm/1000.000Ω). Ditempat terang nilai satuan Ohm dari LDR = 100Ω.

IDevice Icon 4. Mengukur Themistor
Thermistor (Thermally sensitive resistor) adalah sebuah resistor yang dirancang khusus untuk peka terhadap suhu. Thermistor terbagi dalam dua jenis. Pertama, yang disebut dengan Negative Temperature Coefficient Resistor (NTCR), jika mendapat panas, nilai satuan Ohm-nya berkurang, misal pada suhu 250 C nilai satuan Ohm-nya = 47 kilo Ohm (47kΩ). Kedua, yang disebut dengan Positive Temperature Coefficient Resistor (PTCR), jika mendapat panas, nilai satuan Ohm-nya bertambah.
Mengukur nilai satuan Ohm dari thermistor dengan menggunakan. Multimeter adalah seperti yang ditunjukkan oleh gambar di bawah ini.
Gambar. Mengukur Thermistor

IDevice Icon 5. Mengukur Kapasitor
Kapasitor adalah komponen elektronik yang dirancang untuk dapat menyimpan dan membuang Tegangan Arus Listrik Searah (Direct Current Voltage/DCV).
Kapasitor terbagi dalam dua jenis. Pertama, kapasitor yang memiliki kutub positip (+) dan negatip (-). Dalam teknik elektronika disebut kapasitor polar (polarised capacitor). Kedua, kapasitor yang tidak memiliki kutub positip (+) dan negatip (-). Disebut kapasitor non polar (unpolarised capacitor).
Hal penting yang perlu diperhatikan dalam mengukur kapasitor polar adalah ;
a. Kabel penyidik (probes) positip (+) yang berwarna merah diletakkan pada kaki kapasitor yang bertanda positip (+).
b. Kabel penyidik (probes) negatip (-) yang berwarna hitam diletakkan pada kaki kapasitor yang bertanda negatip (-).
c. Saklar jangkauan ukur pada posisi Ω, batas ukur (range) berada pada posisi x1, x10 atau kΩ, sesuai kebutuhan.
d. Untuk kapasitor non polar (unpolarised) kedua kabel penyidik (probes) dapat diletakkan secara sembarang (acak) ke kaki kapasitor. Lihat gambar di bawah ini.
 
Gambar. Mengukur Kapasitor

IDevice Icon 6. Mengukur Transistor
Transistor adalah komponen elektronik yang dirancang sebagai penguat arus, karenanya transistor disebut juga piranti (device) yang menangani arus (current handling device). Lihat gambar di bawah ini.
Gambar. Transistor

Dilihat dari tipenya, transistor terbagi dua, yaitu tipe PNP (Positip-Negatip-Positip) dan tipe NPN (Negatip-Positip-Negatip). Saluran masuk (leads) ke transistor (lazimnya disebut kaki transistor) dinamai dengan : Basis (Base), Kolektor (Collector), dan Emitor (Emitter).
Transistor pada dasarnya adalah dua buah dioda yang disambung secara berbalikan. Dioda yang pertama dibentuk oleh Emitor-Basis, dioda yang kedua dibentuk oleh Basis-Kolektor. Pada transistor tipe PNP, Emitor dan Kolektor berfungsi sebagai Anoda (+) terhadap Basis, sementara Basis berfungsi sebagai Katoda (-) terhadap Emitor dan Emitor. Pada transistor tipe NPN, Basis berfungsi sebagai Anoda (+) terhadap Emitor dan Kolektor, sementara Emitor dan Kolektor berfungsi sebagai Katoda (-) terhadap Basis. Cermati gambar di bawani ini dengan seksama.
 
Gambar. Konfigurasi dan Simbol Transistor

Konsep dioda pada transistor penting untuk dipahami dengan baik, karena erat kaitannya dengan penggunaan Multimeter dalam mengukur nilai satuan Ohm dari transistor (baca kembali uraian materi tentang baterai pada Multimeter).
Hal yang perlu diingat ketika mengukur transistor dengan Multimeter adalah :
a. Pada transistor tipe PNP kabel penyidik (probes) warna merah (+) selalu diletakkan pada kaki Basis, kabel penyidik (probes) warna hitam (-) diletakkan secara bergantian di kaki Emitor dan Kolektor.
b. Pada transistor tipe NPN kabel penyidik (probes) warna hitam (-) selalu diletakkan pada kaki Basis, kabel penyidik (probes) warna merah (+) diletakkan secara bergantian di kaki Emitor dan Kolektor.
c. Saklar jangkauan ukur berada pada posisi Ohm (Ω) dan batas ukur (range) berada pada posisi x1, x10, atau x1kΩ, sesuai kebutuhan. Lihat gambar di bawah ini.
Gambar. Pengukuran Transistor

Kaki-kaki Emitor, Basis, dan Kolektor dari transistor dapat ditentukan dengan tiga cara:
a. Dengan melihat tanda pada badan (case) transistor. Beberapa pabrik transistor membuat bulatan warna hitam atau tanda lingkaran di atas kaki kolektor dari transistor yang berbentuk silinder. Lihat gambar di bawah ini.
b. Dengan menggunakan katalog transistor yang dikeluarkanoleh pabrik pembuat transistor.
c. Dengan melihat sirip kecil yang menonjol keluar dari badan transistor. Lihat kembali gambar transistor.
d. Dengan menggunakan Multimeter.
e. Untuk transistor daya (power transistors) badan transistor berfungsi sebagai kolektor. Lihat gambar di bawah ini.
Gambar. Kaki-kaki Transistor Dilihat Dari Bawah

IDevice Icon 7. Mengukur Dioda
Dioda adalah komponen elektronik yang memiliki dua elektroda yaitu; (1) Anoda (a), dan (2) Katoda (k). Mengikuti anak panah pada simbol diode pada gambar di bawah ini arus listrik mengalir hanya satu arah yaitu dari Anoda ke Katoda. Arus listrik tidak akan mengalir dari Katoda ke Anoda. Hal yang perlu diingat ketika mengukur dioda dengan Multimeter adalah :
 
Gambar. Simbol Dioda
a. Kabel penyidik (probes) warna merah (+) diletakkan pada kaki Anoda, kabel penyidik (probes) warna hitam (-) diletakkan pada kaki Katoda.
b. Saklar jangkauan ukur pada posisi Ohm (Ω) dan batas ukur (range) pada posisi x1, x10, atau x1kΩ, sesuai kebutuhan. Lihat gambar di bawah ini.
Gambar. Pengukuran Dioda

IDevice Icon 8. Mengukur Transformator
Transformator adalah komponen elektronik yang dirancang untuk dapat memindahkan Tegangan Arus Listrik Bolak Balik/Alternating Current Voltage (ACV) dari gulungan primer (P) ke gulungan skunder (S) tanpa ada hubungan langsung antara kedua gulungan tersebut. Lihat gambar gambar di bawah ini.
Gambar. Transformator
Sebuah transformator masih baik dan dapat digunakan, atau sudah rusak dapat dibuktikan dengan cara mengukurnya dengan Multimeter. Hal yang perlu diingat ketika menggunakan Multimeter untuk mengukur transformator adalah :
a. Kedua kabel penyidik (probes) diletakkan secara sembarang (acak) pada titik-titik terminal pada gulungan primer.
b. Kedua kabel penyidik (probes) diletakkan secara sembarang (acak) pada titik-titik terminal pada gulungan skunder.
c. Kedua kabel penyidik (probes) diletakkan secara sembarang (acak) pada titik terminal primer dan skunder.
d. Saklar jangkauan ukur pada posisi Ω, batas ukur (range) pada posisi x1, x10 atau kΩ sesuai kebutuhan. Lihat gambar di bawah ini.
Catatan : Langkah pengukuran tranformator ini berlaku untuk semua jenis transformator yang digunakan pada catu daya, maupun penguat audio/radio.
Gambar. Mengukur Transformator

IDevice Icon 9. Mengukur Gulungan (Coil/Winding)
Gulungan atau Coil atau winding adalah komponen elektronik yang dirancang khusus untuk menghasilkan induksi maknit. Jika gulungan kawat dialiri arus, pada gulungan tersebut akan dihasilkan induksi maknit.
Dalam teknik elektronika, gulungan atau coil ini diterapkan di dalam pembuatan transformator dalam bentuk gulungan primer (P) dan skunder (S), namun ada juga yang dibuat terpisah untuk keperluan khusus. Lihat gambar di bawah ini.
Gambar. Berbagai Jenis Gulungan (Coil/Winding) Untuk Berbagai Keperluan
Kondisi sebuah gulungan (coil/winding), apakah masih baik dan dapat digunakan, atau sudah rusak dapat dibuktikan dengan cara mengukurnya dengan Multimeter. Hal yang perlu diingat ketika menggunakan Multimeter untuk mengukur gulungan (coil/winding) adalah :
a. Kedua kabel penyidik (probes) dapat diletakkan secara sembarang (acak) pada terminal yang terdapat pada gulungan.
b. Saklar jangkauan ukur pada posisi Ω, batas ukur (range) pada posisi x1, x10, atau kΩ, sesuai kebutuhan. Lihat gambar di bawah ini.
Gambar. Mengukur Gulungan (Coil/Winding)

Resistor_Diode

Pada postingan pertama saya ini, saya akan membahas tentang Komponen Elektronika Berupa Resistor, Kondensator,Kapasitansi,dan Dioda

1.Resistor
Resistor adalah komponen elektronik dua saluran yang didesain untuk menahan arus listrik dengan memproduksi penurunan tegangan diantara kedua salurannya sesuai dengan arus yang mengalirinya, berdasarkan hukum Ohm:
\begin{align}V&=IR\\
I&=\frac{V}{R}\end{align}              
Resistor digunakan sebagai bagian dari jejaring elektronik dan sirkuit elektronik, dan merupakan salah satu komponen yang paling sering digunakan. Resistor dapat dibuat dari bermacam-macam kompon dan film, bahkan kawat resistansi (kawat yang dibuat dari paduan resistivitas tinggi seperti nikel-kromium).
Karakteristik utama dari resistor adalah resistansinya dan daya listrik yang dapat diboroskan. Karakteristik lain termasuk koefisien suhu, desah listrik, dan induktansi.
Resistor dapat diintegrasikan kedalam sirkuit hibrida dan papan sirkuit cetak, bahkan sirkuit terpadu. Ukuran dan letak kaki bergantung pada desain sirkuit, resistor harus cukup besar secara fisik agar tidak menjadi terlalu panas saat memboroskan daya.



      
                                                                                    





               
Ohm (simbol: Ω) adalah satuan SI untuk resistansi listrik, diambil dari nama George Simon Ohm. Biasanya digunakan prefix miliohm, kiloohm dan megaohm.

Komposisi karbon

Resistor komposisi karbon terdiri dari sebuah unsur resistif berbentuk tabung dengan kawat atau tutup logam pada kedua ujungnya. Badan resistor dilindungi dengan cat atau plastik. Resistor komposisi karbon lawas mempunyai badan yang tidak terisolasi, kawat penghubung dililitkan disekitar ujung unsur resistif dan kemudian disolder. Resistor yang sudah jadi dicat dengan kode warna dari harganya.
Unsur resistif dibuat dari campuran serbuk karbon dan bahan isolator (biasanya keramik). Resin digunakan untuk melekatkan campuran. Resistansinya ditentukan oleh perbandingan dari serbuk karbon dengan bahan isolator. Resistor komposisi karbon sering digunakan sebelum tahun 1970-an, tetapi sekarang tidak terlalu populer karena resistor jenis lain mempunyai karakteristik yang lebih baik, seperti toleransi, kemandirian terhadap tegangan (resistor komposisi karbon berubah resistansinya jika dikenai tegangan lebih), dan kemandirian terhadap tekanan/regangan. Selain itu, jika resistor menjadi lembab, bahang dari solder dapat mengakibatkan perubahan resistansi yang tak dapat dikembalikan.
Walaupun begitu, resistor ini sangat reliabel jika tidak pernah diberikan tegangan lebih ataupun panas lebih.
Resistor ini masih diproduksi, tetapi relatif cukup mahal. Resistansinya berkisar antara beberapa miliohm hingga 22 MOhm.

Film karbon

Selapis film karbon diendapkan pada selapis substrat isolator, dan potongan memilin dibuat untuk membentuk jalur resistif panjang dan sempit. Dengan mengubah lebar potongan jalur, ditambah dengan resistivitas karbon (antara 9 hingga 40 µΩ-cm) dapat memberikan resistansi yang lebar. Resistor film karbon memberikan rating daya antara 1/6 W hingga 5 W pada 70 °C. Resistansi tersedia antara 1 ohm hingga 10 MOhm. Resistor film karbon dapat bekerja pada suhu diantara -55 °C hingga 155 °C. Ini mempunyai tegangan kerja maksimum 200 hingga 600 volt.

Film logam

Unsur resistif utama dari resistor foil adalah sebuah foil logam paduan khusus setebal beberapa mikrometer.
Resistor foil merupakan resistor dengan presisi dan stabilitas terbaik. Salah satu parameter penting yang mempengaruhi stabilitas adalah koefisien temperatur dari resistansi (TCR). TCR dari resistor foil sangat rendah. Resistor foil ultra presisi mempunyai TCR sebesar 0.14ppm/°C, toleransi ±0.005%, stabilitas jangka panjang 25ppm/tahun, 50ppm/3 tahun, stabilitas beban 0.03%/2000 jam, EMF kalor 0.1μvolt/°C, desah -42dB, koefisien tegangan 0.1ppm/V, induktansi 0.08μH, kapasitansi 0.5pF.
Resistor aksial biasanya menggunakan pola pita warna untuk menunjukkan resistansi. Resistor pasang-permukaan ditandas secara numerik jika cukup besar untuk dapat ditandai, biasanya resistor ukuran kecil yang sekarang digunakan terlalu kecil untuk dapat ditandai. Kemasan biasanya cokelat muda, cokelat, biru, atau hijau, walaupun begitu warna lain juga mungkin, seperti merah tua atau abu-abu.
Resistor awal abad ke-20 biasanya tidak diisolasi, dan dicelupkan ke cat untuk menutupi seluruh badan untuk pengkodean warna. Warna kedua diberikan pada salah satu ujung, dan sebuah titik (atau pita) warna di tengah memberikan digit ketiga. Aturannya adalah "badan, ujung, titik" memberikan urutan dua digit resistansi dan pengali desimal. Toleransi dasarnya adalah ±20%. Resistor dengan toleransi yang lebih rapat menggunakan warna perak (±10%) atau emas (±5%) pada ujung lainnya.

Identifikasi empat pita

Identifikasi empat pita adalah skema kode warna yang paling sering digunakan. Ini terdiri dari empat pita warna yang dicetak mengelilingi badan resistor. Dua pita pertama merupakan informasi dua digit harga resistansi, pita ketiga merupakan pengali (jumlah nol yang ditambahkan setelah dua digit resistansi) dan pita keempat merupakan toleransi harga resistansi. Kadang-kadang pita kelima menunjukkan koefisien suhu, tetapi ini harus dibedakan dengan sistem lima warna sejati yang menggunakan tiga digit resistansi.
Sebagai contoh, hijau-biru-kuning-merah adalah 56 x 104Ω = 560 kΩ ± 2%. Deskripsi yang lebih mudah adalah: pita pertama, hijau, mempunyai harga 5 dan pita kedua, biru, mempunyai harga 6, dan keduanya dihitung sebagai 56. Pita ketiga,kuning, mempunyai harga 104, yang menambahkan empat nol di belakang 56, sedangkan pita keempat, merah, merupakan kode untuk toleransi ± 2%, memberikan nilai 560.000Ω pada keakuratan ± 2%.
Warna Pita pertama Pita kedua Pita ketiga
(pengali)
Pita keempat
(toleransi)
Pita kelima
(koefisien suhu)
Hitam 0 0 × 100

Cokelat 1 1 ×101 ± 1% (F) 100 ppm
Merah 2 2 × 102 ± 2% (G) 50 ppm
Oranye 3 3 × 103
15 ppm
Kuning 4 4 × 104
25 ppm
Hijau 5 5 × 105 ± 0.5% (D)
Biru 6 6 × 106 ± 0.25% (C)
Ungu 7 7 × 107 ± 0.1% (B)
Abu-abu 8 8 × 108 ± 0.05% (A)
Putih 9 9 × 109

Emas

× 10-1 ± 5% (J)
Perak

× 10-2 ± 10% (K)
Kosong


± 20% (M)

Identifikasi lima pita

Identifikasi lima pita digunakan pada resistor presisi (toleransi 1%, 0.5%, 0.25%, 0.1%), untuk memberikan harga resistansi ketiga. Tiga pita pertama menunjukkan harga resistansi, pita keempat adalah pengali, dan yang kelima adalah toleransi. Resistor lima pita dengan pita keempat berwarna emas atau perak kadang-kadang diabaikan, biasanya pada resistor lawas atau penggunaan khusus. Pita keempat adalah toleransi dan yang kelima adalah koefisien suhu.

Resistor pasang-permukaan



Resistor pasang-permukaan dicetak dengan harga numerik dengan kode yang mirip dengan kondensator kecil. Resistor toleransi standar ditandai dengan kode tiga digit, dua pertama menunjukkan dua angka pertama resistansi dan angka ketiga menunjukkan pengali (jumlah nol). Contoh:
"334" = 33 × 10.000 ohm = 330 KOhm
"222" = 22 × 100 ohm = 2,2 KOhm
"473" = 47 × 1,000 ohm = 47 KOhm
"105" = 10 × 100,000 ohm = 1 MOhm
Resistansi kurang dari 100 ohm ditulis: 100, 220, 470. Contoh:
"100" = 10 × 1 ohm = 10 ohm
"220" = 22 × 1 ohm = 22 ohm
Kadang-kadang harga-harga tersebut ditulis "10" atau "22" untuk mencegah kebingungan.
Resistansi kurang dari 10 ohm menggunakan 'R' untuk menunjukkan letak titik desimal. Contoh:
"4R7" = 4.7 ohm
"0R22" = 0.22 ohm
"0R01" = 0.01 ohm
Resistor presisi ditandai dengan kode empat digit. Dimana tiga digit pertama menunjukkan harga resistansi dan digit keempat adalah pengali. Contoh:
"1001" = 100 × 10 ohm = 1 kohm
"4992" = 499 × 100 ohm = 49,9 kohm
"1000" = 100 × 1 ohm = 100 ohm
"000" dan "0000" kadang-kadang muncul bebagai harga untuk resistor nol ohm
Resistor pasang-permukaan saat ini biasanya terlalu kecil untuk ditandai.

 

 

2. Kondensator/ Kapasitor

Kondensator atau sering disebut sebagai kapasitor adalah suatu alat yang dapat menyimpan energi di dalam medan listrik, dengan cara mengumpulkan ketidakseimbangan internal dari muatan listrik. Kondensator memiliki satuan yang disebut Farad dari nama Michael Faraday. Kondensator juga dikenal sebagai "kapasitor", namun kata "kondensator" masih dipakai hingga saat ini. Pertama disebut oleh Alessandro Volta seorang ilmuwan Italia pada tahun 1782 (dari bahasa Itali condensatore), berkenaan dengan kemampuan alat untuk menyimpan suatu muatan listrik yang tinggi dibanding komponen lainnya. Kebanyakan bahasa dan negara yang tidak menggunakan bahasa Inggris masih mengacu pada perkataan bahasa Italia "condensatore", bahasa Perancis condensateur, Indonesia dan Jerman Kondensator atau Spanyol Condensador.
  • Kondensator diidentikkan mempunyai dua kaki dan dua kutub yaitu positif dan negatif serta memiliki cairan elektrolit dan biasanya berbentuk tabung.
Polarized kondensator symbol 3.jpg Lambang kondensator (mempunyai kutub) pada skema elektronika.
  • Sedangkan jenis yang satunya lagi kebanyakan nilai kapasitasnya lebih rendah, tidak mempunyai kutub positif atau negatif pada kakinya, kebanyakan berbentuk bulat pipih berwarna coklat, merah, hijau dan lainnya seperti tablet atau kancing baju.
Capacitor symbol.jpg Lambang kapasitor (tidak mempunyai kutub) pada skema elektronika.
Namun kebiasaan dan kondisi serta artikulasi bahasa setiap negara tergantung pada masyarakat yang lebih sering menyebutkannya. Kini kebiasaan orang tersebut hanya menyebutkan salah satu nama yang paling dominan digunakan atau lebih sering didengar. Pada masa kini, kondensator sering disebut kapasitor (capacitor) ataupun sebaliknya yang pada ilmu elektronika disingkat dengan huruf (C).






































Satuan dari kapasitansi kondensator adalah Farad (F). Namun Farad adalah satuan yang terlalu besar, sehingga digunakan:
  • Pikofarad (pF) = 1\times10^{-12}\,F
  • Nanofarad (nF) = 1\times10^{-9}\,F
  • Microfarad (\mu\,F) = 1\times10^{-6}\,F
Kapasitansi dari kondensator dapat ditentukan dengan rumus:
C=\epsilon_0\epsilon_r\frac{A}{d}
C : Kapasitansi
ε0 : permitivitas hampa
εr : permitivitas relatif
A : luas pelat
d :jarak antar pelat/tebal dielektrik
Adapun cara memperbesar kapasitansi kapasitor atau kondensator dengan jalan:
  1. Menyusunnya berlapis-lapis.
  2. Memperluas permukaan variabel.
  3. Memakai bahan dengan daya tembus besar.
Permitivitas Relatif Dielektrik
Dielektrik↓ Permitivitas↓
Keramik rugi rendah 7
Keramik k tinggi 50.000
Mika perak 6
Kertas 4
Film plastik 2,8
Polikarbonat 2,4
Polistiren 3,3
Poliester 2,3
Polipropilen 8
Elektrolit aluminium 25
Elektrolit tantalum 35
Karakteristik kondensator
Tipe↓ Jangkauan↓ Toleransi (%)↓ Tegangan AC lazim (V)↓ Tegangan DC lazim (V)↓ Koefisien suhu (ppm/C)↓ Frekuensi pancung fR (MHz)↓ Sudut rugi (\tan\;\delta)↓ Resistansi bocoran (Ω)↓ Stabilitas↓
Kertas 10 nF - 10 uF ± 10% 500 V 600 V 300 ppm/C 0,1 MHz 0,01 109 Ω lumayan
Mika perak 5 pF - 10 nF ± 0,5% - 400 V 100 ppm/C 10 MHz 0,0005 1011 Ω Baik sekali
Keramik 5 pF - 1 uF ± 10% 250 V 400 V 30 ppm/C 10 MHz 0,01 108 Ω Baik
Polystyrene 50 pF - 500 nF ± 1% 150 V 500 V -150 ppm/C 10 MHz 0,0005 1012 Ω Baik sekali
Polyester 100 pF - 2 uF ± 5% 400 V 400 V 400 ppm/C 1 MHz 0,001 1011 Ω Cukup
Polypropylene 1 nF - 100 uF ± 5% 600 V 900 V 170 ppm/C 1 MHz 0,0005 1010 Ω Cukup
Elektrolit aluminium 1 uF - 1 F ± 50% Terpolarisasi 400 V 1500 ppm/C 0,05 MHz 0,05 108 Ω Cukup
Elektrolit tantalum 1 uF - 2000 uF ± 10% Terpolarisasi 60 V 500 ppm/C 0,1 MHz 0,005 108 Ω Baik
Berdasarkan kegunaannya kondensator dibagi dalam:
  1. Kondensator tetap (nilai kapasitasnya tetap tidak dapat diubah)
  2. Kondensator elektrolit (Electrolite Condenser = Elco)
  3. Kondensator variabel (nilai kapasitasnya dapat diubah-ubah)  



3.Dioda
Dalam elektronika, dioda adalah komponen aktif bersaluran dua (dioda termionik mungkin memiliki saluran ketiga sebagai pemanas). Dioda mempunyai dua elektroda aktif dimana isyarat listrik dapat mengalir, dan kebanyakan dioda digunakan karena karakteristik satu arah yang dimilikinya. Dioda varikap (VARIable CAPacitor/kondensator variabel) digunakan sebagai kondensator terkendali tegangan.
Sifat kesearahan yang dimiliki sebagian besar jenis dioda seringkali disebut karakteristik menyearahkan. Fungsi paling umum dari dioda adalah untuk memperbolehkan arus listrik mengalir dalam suatu arah (disebut kondisi panjar maju) dan untuk menahan arus dari arah sebaliknya (disebut kondisi panjar mundur). Karenanya, dioda dapat dianggap sebagai versi elektronik dari katup pada transmisi cairan.
Dioda sebenarnya tidak menunjukkan kesearahan hidup-mati yang sempurna (benar-benar menghantar saat panjar maju dan menyumbat pada panjar mundur), tetapi mempunyai karakteristik listrik tegangan-arus taklinier kompleks yang bergantung pada teknologi yang digunakan dan kondisi penggunaan. Beberapa jenis dioda juga mempunyai fungsi yang tidak ditujukan untuk penggunaan penyearahan.
Awal mula dari dioda adalah peranti kristal Cat's Whisker dan tabung hampa (juga disebut katup termionik). Saat ini dioda yang paling umum dibuat dari bahan semikonduktor seperti silikon atau germanium.


Demodulasi radio

Penggunaan pertama dioda adalah demodulasi dari isyarat radio modulasi amplitudo (AM). Dioda menyearahkan isyarat AM frekuensi radio, meninggalkan isyarat audio. Isyarat audio diambil dengan menggunakan tapis elektronik sederhana dan dikuatkan.

Pengubahan daya

Penyearah dibuat dari dioda, dimana dioda digunakan untuk mengubah arus bolak-balik menjadi arus searah. Contoh yang paling banyak ditemui adalah pada rangkaian adaptor. Pada adaptor, dioda digunakan untuk menyearahkan arus bolak-balik menjadi arus searah. Sedangkan contoh yang lain adalah alternator otomotif, dimana dioda mengubah AC menjadi DC dan memberikan performansi yang lebih baik dari cincin komutator dari dinamo DC.

Ada beberapa macam dioda,diantaranya:

1.3.DIODA (PN Junction)
Dioda merupakan suatu semikonduktor yang hanya dapat menghantar arus listrik dan
tegangan pada satu arah saja. Bahan pokok untuk pembuatan dioda adalah Germanium
(Ge) dan Silikon/Silsilum (Si).
Dioda terdiri dari :

 Dioda Kontak Titik
Dioda ini dipergunakan untuk mengubah frekuensi tinggi menjadi frekuensi
rendah.
Contoh tipe dari dioda ini misalnya; OA 70, OA 90 dan 1N 60.
Simbol Dioda Kontak Titik :
 Dioda Hubungan
Dioda ini dapat mengalirkan arus atau tegangan yang besar hanya satu arah.
Dioda ini biasa digunakan untuk menyearahkan arus dan tegangan.
Dioda ini memiliki tegangan maksimal dan arus maksimal, misalnya Dioda tipe
1N4001 ada 2 jenis yaitu yang berkapasitas 1A/50V dan 1A/100V.
Simbol dioda hubungan sama dengan simbol dioda kontak titik.

 

















 Dioda Zener
Dioda Zener adalah dioda yang bekerja pada daerah breakdown atau pada daerah
kerja reverse bias. Dioda ini banyak digunakan untuk pembatas tegangan.
Tipe dari dioda zener dibedakan oleh tegangan pembatasnya. Misalnya 12 V, ini
berarti dioda  zener dapat membatasi tegangan yang lebih besar dari 12 V atau
menjadi 12 V.
Simbol Dioda Zener :












. Dioda Pemancar Cahaya (LED)
LED adalah kepanjangan dari Light Emitting Diode (Dioda Pemancar Cahaya).
Dioda ini akan mengeluarkan cahaya bila diberi tegangan sebesar 1,8 V dengan
arus 1,5 mA. LED banyak digunakan sebagai lampu indikator dan peraga
(display).
Simbol LED :